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1 Introduction

The Exposure Notifications System (ENS) [AG20] introduced by Apple and Google is designed to enable
automated alerts to users of potential exposure to COVID-19 while providing strong privacy guarantees.
In particular, it is designed so that information about a positive diagnosis or potential exposure does not
include identifying information. Furthermore, the system was designed so that Google, Apple, and external
entities do not learn if exposure notifications were shown on users’ devices, nor of other related information
such as user activities, contacts, or assessed risk level. Such information is kept locally on users’ devices,
used locally on those devices for exposure-notification purposes, and never transmitted off the users’ devices
as part of the ENS protocol.

With the fast changing conditions of the pandemic, it is important for Public Health Authorities (or
PHAs) to continuously monitor the evolution of the pandemic and assess the effectiveness of the Exposure
Notification System in order to adapt the overall epidemiological responses based on new trends.

Exposure Notification Privacy-preserving Analytics (ENPA) is a privacy-preserving measurement sys-
tem which enables PHAs to collect metrics in an aggregated form only while upholding the strong privacy
principles of ENS. Designed alongside ENS, ENPA provides access to a small set of metrics, whose scope
is strictly limited to information with epidemiological purposes. ENPA leverages state of the art privacy
and cryptographic techniques to enable the computation of these aggregate metrics, which do not reveal any
individual data. None of the entities involved in the operation of ENPA, not even Apple or Google, can
see the individual contributions of a device. Additionally, the aggregate metrics are only available to the
PHA, unless it voluntarily shares them. For example, ENPA can provide information on how many exposure
notification alerts are displayed to users, without exposing how many alerts each device has displayed. This
is important information that allows PHAs to understand better the effectiveness of the system and adjust
the parameters they provide for ENS if deemed necessary.

Additionally, participation in ENPA is under the user’s control. Users are asked whether they wish to
participate and the privacy-preserving data collection is only allowed with explicit user consent. It can also
be disabled or re-enabled by users through settings in their devices at any time.

The following sections explain how ENPA, when enabled, allows PHAs—and only PHAs—to receive
informative aggregate metrics that closely approximate the true aggregate statistics about ENS and ENX
deployments while preserving the privacy of each user, and follow the strong privacy values of both Apple
and Google.

2 ENPA Design Goals

The ENPA design goal is to provide statistical, aggregate, and differentially private metrics to PHAs from the
Exposure Notification System while protecting the individual contributions, and therefore the privacy of each
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participant. The design aims at achieving this by combining two mechanisms: (1) before transmission to the
PHA, each user’s client device randomizes the user’s metric contribution so as to ensure, after aggregation,
differential privacy guarantees, and (2) transmission to the PHA is performed using a cryptographic secure
computation protocol that only reveals the user reports to the PHA as anonymous, aggregate sums.

ENPA is also designed to protect the dependability of any collected metrics—i.e., prevent the corruption
of the metrics in the face of a variety of errors, faults, or malicious behavior. For this, ENPA relies on
cryptographic mechanisms for validating user metric reports, in particular by bounding the number of
reports by any one user, and the magnitude of the values in those reports, such that no user’s client can
skew the aggregate metrics by accident or malice.

Finally, ENPA is designed to provide users and the PHAs with both transparency and control: ENPA
provides no metrics for EN deployments unless both users and their PHA have opted into ENPA telemetry.

3 Technical Overview

Each user device has values of various metrics related to EN, such as the number of exposure notifications
shown to the user, or the corresponding risk scores computed on the device. The functionality of ENPA
aggregates the metric values from individual devices and provide these to the PHA.

The privacy preserving design for the above functionality leverages the cryptographic secure aggregation
construction introduced by Boneh and Corrigan-Gibbs in the system Prio [CB17]. ENPA further extends
this protocol to achieve differential privacy for the output via amplification of small local randomization at
the users using the aggregation protocol [BBGN19, CSU+19, UEFM+20, FMT20].

In this section, we provide a high level overview of ENPA with a focus on the devices and servers operated
by Apple or Google. A more detailed description of the ENPA protocol deployment architecture is provided
in Section 5. The PHA runs one of the Prio servers that performs aggregation, and obtains telemetry
statistics. As per the Prio architecture, the ENPA system relies on one additional aggregation server, called
an Helper (Facilitator) server. This party facilitates the computation in the privacy-preserving protocol
but does not obtain the final telemetry statistics. Achieving the privacy properties of our system requires
independent parties running the Helper server and the PHA server, and assumes that those parties will not
collude.

The PHA and the Helper servers do not receive user contributions directly, but instead receive them
from an Ingestion server ; both Apple and Google are running their own ingestion server for their respective
user populations. Thus, devices send user encrypted contributions to their respective ingestion server. Each
encrypted contribution contains two distinct parts, one is encrypted with the Helper server public key and
the other encrypted with the PHA server public key. This encryption protects the confidentiality of the
content from both eavesdroppers and from the ingestion servers themselves. Each ingestion server separates
the two encrypted parts of contributions and forwards the respective Prio parts to the appropriate Helper
and PHA servers—but only after ensuring each contribution is from a legitimate user device, to eliminate
illegitimate inputs. Furthermore, the ingestion server ensures that each forwarded contribution is stripped
of identifiable information, such as the client IP address or exact upload time. After transmission of data to
the PHA and Helper servers, the Ingestion servers do not retain any of the contributions.

Fig. 1 shows an high-level overview of the system architecture and the data flow. Each client adds
local noise to its input value, then splits it into two cryptographic shares and computes a distributed zero-
knowledge range proof for the value that is shared. The client encrypts one of the shares and the correspond-
ing proof part under the public key of the PHA, and the other share and proof part under the public key of
the Helper server. The client sends the resulting ciphertexts to the ingestion server, accompanied with an
attestation (i.e., a device-specific cryptographic proof) of being a legitimate device.

The ingestion server checks the attestation for each client contribution, and for valid contributions for-
wards the accompanying opaque ciphertexts to the PHA and Helper server, respectively. This forwarding
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Figure 1: ENPA Architecture

is performed in batches, in a way that limits association between the inputs and outputs of the ingestion
server.

The PHA and the Helper servers decrypt the inputs they receive from the ingestion servers and run the
distributed verification for the zero-knowledge range proofs for all inputs. The Helper server sums all shares
for which the corresponding proofs verified and sends the resulting aggregated result to the PHA. The PHA
sums up its shares from inputs that had valid range proofs and adds to that the aggregate received from the
Helper server to obtain the final differentially-private aggregate count across all devices.

4 ENPA Components

4.1 Input Format

Each client will report values for multiple metrics. For each metric, its domain is split into a set of intervals
(i.e., histogram bins) where the client will be reporting the interval in which its input falls. The reported
metrics are combined into a single vector by concatenating the vectors for each metric (i.e., forming a cross
product of the histograms, accounting for all possible interval partitions). Each client’s input is this full,
concatenated binary vector.

4.2 Local Input Randomization for Differential Privacy

The basis of ENPA reporting is the vector ~X = (x1, . . . , xk) constructed as described above. However, this
original input vector is never sent directly; rather, it is randomly perturbed and then sent via the encrypted,
secret-shared aggregation mechanism described in the rest of this section. In combination, those mechanisms
ensure that each client’s metric report has local differential privacy, that the report is not linked back to the
originating client, and that the final, aggregate metrics received by PHAs are subject to strong differential
privacy guarantees.

As a first step, each ENPA client randomizes its original input vector ~X = (x1, . . . , xk) to obtain a report

binary vector ~X ′ = (x′1, . . . , x
′
k). This randomization is performed in a manner as shown below, such that a

local differential privacy guarantee of ε0 holds for the ~X ′ report binary vector.

~X ′ := RR( ~X, ε0) is computed for each xj in ~X, 1 ≤ j ≤ k, using a good source of randomness, as follows
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• Randomly sample a Boolean b with probability (eε0 − 1)/(eε0 + 1) of being true.

• If b is true, then set x′j ← xj .

• If b is false, then set x′j ← r, where r is randomly sampled as 0 or 1 with equal probability.

NB this is equivalent to

• Randomly sample a Boolean b with probability 1/(eε0 + 1) of being true.

• If b is false, then set x′j ← xj .

• If b is true, then set x′j ← ¬xj .

This resulting metric report binary vector ~X ′ is never revealed directly to any party in the ENPA
system. Instead, it is reported via the secret-sharing aggregation mechanism described below; the aggregation
will greatly amplify the privacy guarantees for each client beyond the original ε0 local differential privacy
guarantee as explained in Section 4.5.

4.3 Input Secret Sharing

ENPA transmits the randomized metric report binary vector ~X ′ using secret sharing and authenticated
encryption to the PHA and Helper aggregation servers, separately. ENPA generates the two secret shares
to be transmitted as follows: for each x′i, the client generates a random r modulo p, and computes shares
[x′i]Helper := r mod p and [xi]PHA := xi − r mod p. The value of p is such that p ≡ 1 mod 2N with N =
2dlog2(k+1)e in order to facilitate efficient Fast Fourier Transform (FFT) computations.

The information in the shares for the PHA and Helper aggregation servers are

[ ~X ′]PHA = ([x′1]PHA, . . . , [x
′
k]PHA) ,

[ ~X ′]Helper = ([x′1]Helper, . . . , [x
′
k]Helper).

In order to optimize the communication of shares, ENPA relies on a pseudorandom generator (PRG) to
compress the secret shares for one of the parties. In particular, ENPA generates the shares r for the Helper
aggregation server by generating (using good randomness) a 32-byte random seedHelper , parsed as a 128-bit
key and a 128-bit counter, and uses those values to initialize an AES-CTR PRG from which ENPA derives
the Helper shares and the corresponding PHA shares. Thus, the shares shares actually sent to the PHA and
Helper aggregation servers are

[ ~X ′]PHA = ([x′1]PHA, . . . , [x
′
k]PHA) ,

seedHelper.

Upon receipt and decryption of its share, the Helper aggregation server expands seedHelper to obtain [ ~X ′]Helper =
([x′1]Helper, . . . , [x

′
k]Helper). For ease of presentation we omit explicitly describing this step for the rest of the

paper and assume that the two servers have the expanded shares.

4.4 Zero-Knowledge Distributed Range Proofs

ENPA uses the distributed zero-knowledge range proofs construction introduced by Prio [CB17], with opti-
mizations for the ENPA specifics. In particular, after input randomization, an ENPA client possesses a vector
~X ′ = (x′1, . . . , x

′
k) and will be providing a proof that this is a binary vector, i.e., x′i ∈ {0, 1} for all i = 1 to k.

In order to prove this statement, it is sufficient to show that C(xi) = 0 for the function C(z) = z(z− 1) over
Zp. The proof of this polynomial identity can be established for all {x′i}ki=1 independently, in parallel using
a polynomial of at least degree k + 1. Because ENPA uses FFT computation for fast polynomial evaluation
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and interpolation, ENPA chooses to uses polynomials of degree the next power of two, N = 2dlog2(k+1)e,
where the 2N -th roots of unity are denoted as 1, ω, ω2, . . . , ω2N−1.

Proof Generation. To create distributed zero-knowledge proofs that establish that the two messages to
the PHA server and the Helper server form a binary vector when summed together pointwise in Zp, the
ENPA client generates polynomials f(x) and g(x) as follows:

• f(1) and g(1) are set to be independent random values,

• f(ω2i) := x′i for i = 1 to k,

• g(ω2i) := x′i − 1 for i = 1 to k,

• f(ω2i) := g(ω2i) := 0 for all k < i < N .

By design, it holds that f and g are polynomials of degree ≤ k. Next, the ENPA client computes h(x) =
f(x) · g(x), which is a polynomial of degree ≤ 2k ≤ 2N . We note that h(ω2i) = 0 for all i = 1 to N − 1
if-and-only-if the inputs xi are binary. Thus, knowing the points h(1) and h(ω2j−1) for j = 1 to N will be
sufficient to recover the target polynomial h(x).

The ENPA client computes the following proof shares for the PHA and Helper aggregation servers:

πPHA = ([f(1)]PHA, [g(1)]PHA, [h(1)]PHA, [h(ω)]PHA, [h(ω3)]PHA, . . . , [h(ω2N−1)]PHA) , and

πHelper = ([f(1)]Helper, [g(1)]Helper, [h(1)]Helper, [h(ω)]Helper, [h(ω3)]Helper, . . . , [h(ω2N−1)]Helper) ,

computing the transmitted shares for the polynomial evaluations computed as done for the input in Sec-
tion 4.3, e.g., also using a PRG to reduce the size of the message to the Helper server.

Proof Verification. For the PHA server and Helper servers to collaboratively verify (without learning
anything else) that two messages form a binary vector when summed together pointwise in Zp, the two

servers run the following distributed verification over the two messages ([ ~X ′]PHA, πPHA) and ([ ~X ′]Helper, πHelper)
they have respectively received.

The PHA server interpolates three polynomials fPHA(x), gPHA(x) and hPHA(x) as follows:

• using the points fPHA(1) := [f(1)]PHA, fPHA(ω2i) := [x′i]PHA for i = 1 to k, and fPHA(ω2i) := 0 for all
k < i < N to interpolate fPHA(x) of degree ≤ k < N ;

• using the points gPHA(1) := [g(1)]PHA, gPHA(ω2i) := [x′i]PHA − 1 for i = 1 to k, and gPHA(ω2i) := 0 for
all k < i < N to interpolate gPHA(x) of degree ≤ k < N ;

• using the points hPHA(1) := [h(1)]PHA, hPHA(ω2i) = 0 for all i = 1 to N − 1, and hPHA(ω2i−1) =
[h(ω2i−1)]PHA for 1 ≤ i ≤ N to interpolate hPHA(x) of degree < 2N .

The Helper server interpolates three polynomials fHelper(x), gHelper(x) and hHelper(x) as follows:

• use the points fHelper(1) := [f(1)]Helper, fHelper(ω
2i) := [x′i]Helper for i = 1 to k, and fHelper(ω

2i) := 0 for
all k < i < N to interpolate fHelper(x) of degree ≤ k < N ;

• use the points gHelper(1) := [g(1)]Helper, gHelper(ω
2i) := [x′i]Helper for i = 1 to k, and gHelper(ω

2i) := 0 for
all k < i < N to interpolate gHelper(x) of degree ≤ k < N ;

• use the points hHelper(1) := [h(1)]Helper, hHelper(ω
2i) = 0 for all i = 1 to N − 1, and hHelper(ω

2i−1) =
[h(ω2i−1)]Helper for 1 ≤ i ≤ N to interpolate hHelper(x) of degree < 2N .

From the above interpolations, the below functions f ′, g′, and h′ can be defined, and these give the necessary
verification properties:
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• f ′(x) = fPHA(x)+fHelper(x) since f ′(ω2i) = fPHA(ω2i)+fHelper(ω
2i) for 0 ≤ i ≤ N−1, and f ′(x) = f(x)

if the proof is correct;

• g′(x) = gPHA(x) + gHelper(x) since g′(ω2i) = gPHA(ω2i) + gHelper(ω
2i) for 0 ≤ i ≤ N − 1, and g′(x) = g(x)

if the proof is correct;

• h′(x) = hPHA(x) + hHelper(x) since h′(ωi) = hPHA(ωi) + hHelper(ω
i) for 0 ≤ i ≤ 2N − 1 if and only if

xi ∈ {0, 1} for 1 ≤ i ≤ k, and h′(x) = h(x) if the proof is correct.

The PHA server and the Helper server agree on a randomly-chosen polynomial evaluation point r where
r ← Zp\{1, ω, . . . ω2N−1}. The PHA evaluates fPHA(r), gPHA(r) and hPHA(r) and sends these values to the
Helper. The Helper server evaluates fHelper(r), gHelper(r) and hHelper(r) and sends these values to the PHA.

The PHA server and the Helper server accept the proof if they verify the following equation to hold:

(fPHA(r) + fHelper(r)) (gPHA(r) + gHelper(r)) = (hPHA(r) + hHelper(r)) . (1)

Security Properties. The above distributed zero-knowledge (ZK) system is an instantiation of the fully
linear PCP construction introduced in the work of Boneh et al. [BBCG+19], which generalizes and optimizes
the distributed ZK construction from the Prio protocol [CB17]. As such the construction provides

• completeness, which guarantees that an honest client can construct a correct proof;

• soundness, which guarantees that client cannot accidentally or maliciously construct a cheating proof;

• honest-verifier zero knowledge, which means that the verifiers cannot learn anything more than the
validity of the proof statement, as long as one of them is honest.

We refer the reader to the work of Boneh et al. [BBCG+19] for complete proofs. Intuitively soundness
follows from the fact that the check of Eq. (1) guarantees with high probability that f ′(x) · g′(x) = h′(x),
as polynomials. In particular, this implies that f ′(ω2i) · g′(ω2i) = h′(ω2i) for all i = 1 to k, which in turns
implies

([x′i]PHA + [x′i]Helper) · ([x′i]PHA + [x′i]Helper − 1) = 0. (2)

Therefore, the input ~X ′ shared between the PHA server and the Helper server is a binary vector, i.e.,
x′i := [x′i]PHA + [x′i]Helper is 0 or 1 for all i = 1, . . . , k.

The intuition for the zero knowledge property of the protocol is that the two verifiers learn a single
evaluation of the polynomials f(x) and g(x) at point r that is chosen randomly and independently of any
input value. Since these polynomials have high degree, a single evaluation does not reveal anything about
the evaluations of these polynomials f(ω2i) and g(ω2i), which depend on x′i for i = 1 to k.

4.5 Amplification of Differential Privacy via Secret-Shared Aggregation

The randomization performed locally by each client is one of the key foundations of ENPA privacy protection,
because it guarantees local differential privacy, and can be performed and verified by clients without further
assumptions. However, its benefits go further: it provides an initial level of uncertainty that is strongly
amplified by ENPA’s cryptographic secret-sharing-based aggregation mechanisms. The two different mech-
anisms, in combination, ensure that PHAs receive as final output only aggregate sums—the components of
which are not linked directly to any contributing client—for which strong differential privacy properties can
be guaranteed.

Recall that the secret shares transmitted by each client i are the encoding of a randomized report binary
vector ~X ′i = (x′i,1, . . . , x

′
i,k). If there are n clients that send reports, after the final aggregation of the secret

shares for those metric reports, the PHA receives element-wise sums of the formz′1 =
∑
i∈[n]

x′i,1, z′2 =
∑
i∈[n]

x′i,2, . . . , z′k =
∑
i∈[n]

x′i,k

 .
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n δ < 1/10 δ < 1/100 δ < 1/1000 δ < 1/10,000 δ < 1/100,000 δ < 1/1,000,000

10,000 εc < 0.53 εc < 7.67 εc < 7.98 εc < 8.00 εc < 8.00 εc < 8.00
100,000 εc < 0.01 εc < 0.25 εc < 0.46 εc < 0.66 εc < 0.84 εc < 1.02

1,000,000 εc < 0.01 εc < 0.04 εc < 0.10 εc < 0.15 εc < 0.19 εc < 0.23
10,000,000 εc < 0.01 εc < 0.01 εc < 0.03 εc < 0.04 εc < 0.06 εc < 0.07

Figure 2: The central differential privacy guarantees εc that result from unlinkable aggregation of ε0 = 8
metric report binary vectors, as used in ENPA. As shown in the table, the central guarantee can never
be weaker than the original, local ε0 guarantee; however, the central guarantee gets much stronger as the
number of participating clients increases. The εc central guarantees are upper bounds (i.e., privacy may
be better, but not worse), always stated with the caveat that it is not known whether they hold with δ
probability. To quantify the potential impact of this caveat, the columns of the table show what bounds are
known to hold for different δ probabilities—e.g., may be expected to hold for 90% and 99% of clients (first
two columns) through to 99.9999% of clients (last column).

Subsequently, to estimate the count for each bit in the set of binary vectors input by clients, the PHA need
only debias these element-wise sums by computing zi := 1

eε0−1 ((eε0 + 1)z′i − n) for 1 ≤ i ≤ k. The vector
(z1, . . . , zk) is an unbiased statistical estimate of the true aggregate counts [DR14].

Intuitively, there is an increased amount of uncertainty in the final element-wise aggregate sums of client
contributions seen by the PHA (i.e., the (z′1, . . . , z

′
k) vector and the unbiased vector (z1, . . . , zk) derived

from it). Since they are aggregated over multiple contributions, and each contribution has uncertainty, the
uncertainty is compounded such that the final sums allow very little to be inferred about any of the original
client contributions. In particular, the sums do not provide any means for discovering which values were
present in any single client’s contribution: neither whether that client had any bit set in its metric report
binary vector, nor whether there was some pattern or correlation in that client’s report binary vector.

In short, for n > 1 there is no means of discovering the bits of any client’s metric report binary vector—in
general—by direct inspection of the aggregate sums. However, the possibility remains that (high-confidence)
inferences might be drawn indirectly, by inspection of the aggregate sums. Fortunately, this risk can be
precisely quantified using the techniques of differential privacy [DR14].

Formally, we can mathematically characterize how privacy of client contributions is improved by the
uncertainty in the final element-wise aggregate sums using the techniques of differential privacy. A series of
recent results, colloquially known as amplification by shuffling [BBGN19, CSU+19, FMT20, UEFM+20], have
precisely characterized how the privacy of locally-randomized metric reports is amplified by central processing
that eliminates knowledge of which client sent what report—such as the secret-shared aggregation in ENPA.

The most recent of these results, by Feldman et al. [FMT20], gives a tight bound of the central (εc, δ)
differential privacy guarantee that can result from summing together of n unlinkable ε0 differentially-private
report binary vectors, as in ENPA:

εc = O

(√
eε0 log(1/δ)√

n

)
.

However, this bound is only stated asymptotically (as per the big-O notation), and is not applicable to
all n that might be seen in different-sized ENPA deployments. Also, as is often the case with differential
privacy guarantees [DR14], this central εc guarantee is given with respect to a δ caveat, i.e., with probability
1 − δ the εc guarantee is known to hold, but with probability δ it is not known whether the εc guarantee
holds—although a weaker ε′c guarantee is known to hold. For every value of δ a corresponding εc guarantee
is known to hold; however, this guarantee will get weaker as the δ probabilities imply higher confidence (i.e.,
as the δ caveat gets smaller). This said, whatever the δ, the known εc guarantee can never be weaker than
the original ε0 local guarantee.
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Given a specific δ caveat probability, the utility of the final aggregation (i.e., its error compared to an
ideal aggregation of respondents’ true values) can also be stated asymptotically for k-bit metric report binary
vectors—given the number of respondents n and the εc bound derived from the δ caveat—as the following
`∞-error bound α, which holds with probability 1− β:

α = Θ

(√
log(k/β) log(1/δ)

nεc

)
.

Asymptotic bounds can be difficult to reason about concretely—especially when the bounds apply to
values such as εc and δ that are themselves bounds. Fortunately, to understand the empirical guarantees
that will apply in practice, the recent work by Feldman et al. [FMT20] also provides numerical means to
evaluate what concrete (not asymptotic) bounds are known to hold for different choices of parameters.

Figure 4.5 shows what concrete guarantees are known to hold for different δ caveats for the concrete
ENPA parameters at the different deployment sizes (i.e., choices of n) for which ENPA is designed. The
bounds in the figure are computed numerically using the iterative techniques of [FMT20] to derive tight
concrete εc bounds. In particular, as shown in the table, for aggregation over 100 thousand clients a local
randomized response with ε0 = 8 is amplified to obtain εc ≈ 0.83 at a δ probability of one-in-100,000. (Not
shown in the figure is the concrete expected utility, but for this setting of n = 100,000 and δ = 1/100,000
the expected standard deviation of any sum is approximately 6.)

5 ENX ENPA Construction

The previous section overviewed the main techniques and the general cryptographic design for a private
aggregate measurement system. In this section, we describe some additional components of the concrete1

instantiation we use in the private analytics implementation in ENX.
In its deployment in the United States, the ENPA system is a five-party system presented in Figure 3. In

this system, Apple and Google run their respective ingestion servers for the contributions coming from iOS
and Android phones. The Helper server is run by the Internet Security Research Group (ISRG)2. The PHA
server is split in two components: an aggregator with similar functionality to the Helper server, run by the
National Cancer Institute in the National Institutes of Health (NIH)3, and a reconstructor server that adds
the shares evaluated by the two computation servers and provides the results in a graphic user interface to
the respective health authority, run by the MITRE Corporation4.

5.1 Asynchronous Communication

An important remark is that ENPA system does not need to be run synchronously. Indeed the only require-
ment is that the final reconstructor server sums the aggregated shares corresponding to the same batches
(and that the number of valid contributions from the batches over the aggregation window is large enough
to offer the privacy guarantees aimed for—cf. Section 4.5). Therefore, the servers communicate with each
other by writing signed messages in their respective cloud storage buckets, which are treated as mailboxes.

5.2 Bootstrapping Trust

The ENPA system requires the different parties to know one or several public keys from each other (for au-
thenticity), their cloud identity (for ACL), and the location of their respective storage buckets. In particular,
for the public keys:

1We refer the interested reader to the open source implementation of the aggregation server has been developed by ISRG
and available at https://github.com/abetterinternet/prio-server, and to the open source implementation of the Android
client available at https://github.com/google/exposure-notifications-android.

2www.abetterinternet.org
3www.nih.gov
4www.mitre.org
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Figure 3: US ENX ENPA Architecture

• The aggregation servers generate encryption keys PKenc
NIH and PKenc

ISRG (which needs to be known by
the user devices), and generate signature keys PKsig

NIH and PKsig
ISRG to attest to the authenticity of the

messages they produce (which needs to be known by each other and by the reconstructor server);

• The ingestion servers generate signature keys PKsig
APPLE and PKsig

GOOGLE to attest to the authenticity of
the messages they produce (which needs to be known by the aggregation servers).

In order to bootstrap the trust in the system, the public keys and cloud storage buckets related information
are stored in manifest files, published at well-specified and unique URLs pre-shared among the parties
(served over HTTPS). When setting their system up or verifying signatures, each party will therefore read
the information it needs from the other parties’ manifest files. An additional detail is that Apple CA receives
PKenc

NIH and PKenc
ISRG in Certificate Signing Requests (CSRs) and issues certificates for these public keys. Finally,

the clients are provided with those certificates (which will be verified on device), the parameter ε0 used in
the local randomizer, and the modulus p used for the cryptographic secret sharing.

5.3 Client Processing

For each collected metric the user phones process their inputs as described in Figure 4 and send the results
to their respective (Apple or Google) ingestion server. The specific message formats used depend on the
ingestion services and out of scope of this whitepaper. However, note that it is (somewhat obviously)
important that the user devices and aggregation servers use matching encryption schemes and PRGs; indeed,
recall that the helper server will need to expand a seed to obtain the secret shares in the exact same manner
as the devices expanded the seed. In ENPA, the devices use ECIES with SHA256 over P256 and AES-GCM
with 128-bit key and 128-bit IV for encryption, and the PRG is AES-CTR with 128-bit key and 128-bit IV
where each 4-byte output blocks is accepted if it is smaller than p (i.e., rejection sampling is used to ensure
that the output produces uniform integers modulo p).
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Client Input Processing

• Each client prepares the vector of its metric contributions ~Xi = (xi,1, . . . , xi,k).

• It applies randomized response with parameter ε0 on each value in the vector ~Xi to obtain

~X ′i = (x′i,1, . . . , x
′
i,k).

• It samples uniformly at random (using good randomness) a 32-byte seed seed
(i)
ISRG, parsed as a 128-bit

key concatenated with a 128-bit IV.

• It evaluates AES-CTR with the above key and IV and perform rejection sampling until it obtains
k + 3 +N random elements ρ1, . . . , ρk+3+N modulo p.

• For each j ∈ {1, k}, the client computes the NIH random share of [x′i,j ]NIH = x′i,j − ρj mod p.

• For each j ∈ {1, k}, the client computes a distributed range proof π
(i)
NIH for the fact that x′i,j ∈ {0, 1}

as in Section 4.4, where

[f(1)]ISRG = ρk+1, [g(1)]ISRG = ρk+2, [h(1)]ISRG = ρk+3, [h(ω2m−1)]ISRG = ρk+3+m for m = 1, . . . , N

• The client uses an authenticated encryption scheme and creates

ct
(i)
NIH = Enc

(
PKNIH; [ ~X ′i]NIH||π(i)

NIH

)
ct

(i)
ISRG = Enc

(
PKISRG; seed

(i)
ISRG

)
• The client sends (ct

(i)
NIH, ct

(i)
ISRG) to the ingestion server together with information necessary for device

attestation, specific for each company.

Figure 4: ENPA: Client Processing

5.4 Ingestion Server Processing

The ingestion servers for iOS and Android run their respective device attestation checks, and if those pass
they process the data they have received as described in Figure 5. The messages posted on the cloud storage
buckets of the aggregation servers are Avro encoded5, and signed using ECDSA with SHA256 over P256 by
the ingestion servers. The filenames are defined relative to a deployment-specific bucket and path prefix,
and defined in terms of aggregation id (a unique identifier/name for the metric, spanning batches), a batch
id (a unique identified for a specific batch of data), and timestamps.

5.5 Aggregation Servers Processing

The aggregation servers process all the batches they received from the ingestion servers for each aggregation
id, for which the signatures are valid, during an aggregation window (e.g., an aggregation window may span
the 24 hours at days boundaries for the UTC timezone). The cryptographic steps are described in Figs. 6
and 7. Note that the validity zero-knowledge range proofs are organized in the same batches as the inputs,
and posted (and signed) on the other aggregation server cloud storage bucket. Finally, both aggregation

5The exact encoding of all messages exchanged by servers is specified at https://github.com/abetterinternet/

prio-server/tree/main/avro-schema.
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Ingestion Server Processing

• For each input that ingestion server receives, it verifies the device attestation. If the check passes, it

extracts the two ciphertexts (ct
(i)
NIH, ct

(i)
ISRG). If the device attestation does not verify, then the ingestion

server discards the packets.

• The ingestion server generates a random identifier ui for the ciphertexts (ct
(i)
NIH, ct

(i)
ISRG) as well as a

random challenges ri for the verification of the range proof included in these inputs.

• The ingestion server forwards in batches the values (ui, ri, ct
(i)
NIH) to NIH, and the values (ui, ri, ct

(i)
ISRG)

to ISRG.

Figure 5: ENPA: Ingestion Server Processing

servers aggregate the data for which the zero-knowledge range proofs verify over the aggregation window,
and post (and sign) the sum to the cloud storage bucket of the reconstructor server. The latter then provides
the aggregated statistics to the health authorities at the granularity of the aggregation window (e.g., daily).

ENPA Aggregation Servers Processing

Proof Verification Computation

• The NIH server and the ISRG server decrypt the ciphertexts received from the ingestion server.

• For each input that the NIH server decrypts as

[ ~X ′i]NIH, π
(i)
NIH = ([f(1)]NIH, [g(1)]NIH, [h(1)]NIH, [h(ω)]NIH, [h(ω3)]NIH, . . . , [h(ω2N−1)]NIH,

the NIH server evaluates
fNIH(ri), gNIH(ri), hNIH(ri)

and sends those values together with ui to the Helper.

• For each input that the ISRG server decrypts as seed
(i)
ISRG, it parses the seed as a 128-bit key concatenated

with a 128-bit IV, and evaluates AES-CTR with the above key and IV and perform rejection sampling
until it obtains k + 3 +N random elements ρi,1, . . . , ρi,k+3+N modulo p.

• For each input the ISRG server defines

[ ~X ′i]ISRG = (ρi,1, . . . , ρi,k),

π
(j)
ISRG = (ρi,k+1, . . . , ρi,k+3+N )

= ([f(1)]ISRG, [g(1)]ISRG, [h(1)]ISRG, [h(ω)]ISRG, [h(ω3)]ISRG, . . . , [h(ω2N−1)]ISRG .

It then evaluates
fISRG(r), gISRG(r), hISRG(r),

and sends those values to the NIH server together with ui.

Figure 6: ENPA: Aggregation Processing
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ENPA Aggregation Servers Processing

Aggregation

• The ISRG server verifies the ranges proofs for each input it has received and let U (B)
ISRG be the set of

identifiers ui in a batch B of inputs such that

(fNIH(ri) + fISRG(ri)) (gNIH(ri) + gISRG(ri)) = (hNIH(ri) + hISRG(ri)) .

• The NIH server verifies the ranges proofs for each input it has received and let U (B)
PHA be the set of

indices i in a batch B of inputs such that

(fNIH(ri) + fHelper(ri)) (gNIH(ri) + gHelper(ri)) = (hNIH(ri) + hHelper(ri)) .

• For each batch B, the ISRG server computes

~S
(B)
ISRG =

∑
i∈U(B)

ISRG

[ ~X ′i]ISRG,

and sends (U (B)
ISRG,

~S
(B)
ISRG) to MITRE.

• For each batch B, the NIH server computes

~S
(B)
NIH =

∑
i∈U(B)

NIH

[ ~X ′i]NIH,

and sends (U (B)
NIH ,

~S
(B)
NIH) to MITRE.

• For each batch B, MITRE verifies that U (B)
Helper = U (B)

NIH . If this does not hold, it discards the batch.
Otherwise, it computes

~S(B) = ~S
(B)
ISRG + ~S

(B)
NIH).

Figure 7: ENPA: Aggregation Processing

6 Conclusion

The Exposure Notification System designed by Apple and Google provides a digital solution for detection of
possible exposures to COVID-19 that puts user privacy first. This white paper presents Exposure Notifica-
tions Privacy-preserving Analytics, which extends the capability of ENS by providing PHAs visibility into
the functioning and the effectiveness of ENS while meeting the strong privacy principles of Exposure Notifi-
cation. Cryptographic secure computation is used to protect the individual contribution of each user, and is
augmented with the use of local differential privacy. Range proofs and device attestations are employed for
resilience against malicious participants. The combination of these methods allows to provide accurate and
significant aggregate metrics to PHAs for epidemiological purposes in a privacy preserving fashion.
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